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Abstract

Purpose – To develop an effective and reliable procedure for the calculation of heat fluxes from the
measured temperatures in experimental tests of impingement water cooling.

Design/methodology/approach – An inverse heat transfer analysis procedure is developed and
implemented into a 2D finite element program. In this method, the least-squares technique, sequential
function specification and regularization are used. Simplifications in the sensitivity matrix calculation
and iterative procedures are introduced. The triangular and impulse-like profiles of heat fluxes
simulating practical conditions of impingement water cooling are used to investigate the accuracy and
stability of the proposed inverse procedure. The developed program is then used to determine the heat
flux during impingement water cooling.

Findings – A hybrid procedure is developed in which inverse calculations are conducted with a
computation window. This procedure may be used as a whole time domain method or become a
periodically sequential or real sequential method by adjusting the sequential steps.

Originality/value – Parametric study and application show that the developed method is effective
and reliable and that inverse analysis may obtain the heat flux with an acceptable level of accuracy.

Keywords Heat conduction, Water, Cooling systems, Finite element analysis

Paper type Research paper

Introduction
An inverse heat conduction problem (IHCP) means that the boundary conditions (BC)
or material properties are not fully specified, and that they are determined from the
measured internal temperature profiles. Because the effects of changes in BC are
usually lagged and damped; i.e. the varying magnitude of the interior temperature
profile lags behind the changes in BC and is generally of lesser magnitude, an IHCP
would be a typically ill-posed problem and would normally be sensitive to the
measurement errors. In general, the uniqueness and stability of an IHCP solution are
not guaranteed (Beck et al., 1985; Weber, 1981; Alifanov, 1994).

A variety of numerical methods and computational algorithms have been developed
to obtain a reliable heat transfer inverse solution. Among these are the least-square
regularization method (Beck et al., 1985, 1996), the sequential function specification
method (Beck et al., 1996; Kim, 2001), the space marching technique (Weber, 1981), the
conjugate gradient method (Alifanov, 1994; Khache and Jarny, 2001), and the maximum
entropy method (Kim and Lee, 2002). Important applications of these methods and their
numerous modifications have been performed in various branches of thermal
engineering such as quenching and hot rolling as well as controlled cooling of steel
(Bass, 1980; Beck et al., 1996; Liu et al., 2002; Osman, 1990; Videcoq and Petit, 2001).
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The determination of the surface heat flux or the surface heat transfer coefficient
(HTC) is an important issue among the objectives of the IHCP and, therefore, it has
been extensively studied. Improvements and adaptations of the numerical algorithms
to complex applications, such as water cooling of hot plates by jet impingement on
run-out tables, are still an active area of research for obtaining stable and reliable
results.

In this paper, the least-squares method, sequential function specification,
regularization, and iterative technique are used and are implemented into a
two-dimensional finite element (2D FE) program for analysing IHCP to obtain a higher
accuracy and reliability of the inversely calculated heat flux and surface temperature.

Parametric studies have been performed with abrupt heat flux inputs simulating
those that occur in run-out table applications. In this treatment, directly calculated
internal temperatures under the specially designed heat flux inputs are assigned with
artificial random errors and are assumed to be the virtually measured input
temperatures. The effects of different values of the number of future time steps and the
regularization parameters are numerically investigated, and general guidelines for the
application of the algorithm to practical cases are developed.

The inverse analysis algorithm is then applied to obtain the heat flux on the top
surface from internal thermocouple measurements of temperature at points beneath
the surface at a small distance of about 1 mm. Calculation results of the heat flux values
and boiling curves are compared with those available in literatures.

Formulation for direct analysis
The modelling and experimental procedures are based on a 2D planar and
axisymmetric assumption. For completeness of the treatment, a brief outline of the
equations for direct FE formulation of the transient conduction heat transfer problem is
given in the following section. A detailed account of this formulation and equations
may be found in reference, Bathe (1982).

The general governing equation for 2D conduction heat transfer problems, shown in
Figure 1, is written in the form:

Figure 1.
Boundary conditions for a

general conduction
problem
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where T is the temperature, 8C; q b is the heat generation per unit volume, W/m3; kx and
ky are the conductivities in the x- and y-directions, respectively, W/m8C; r is the density,
kg/m3; cp is the specific heat, J/kg8C; t is the time, s; and x, y are the Lagrangian
coordinates of the point.

All kinds of the BC such as prescribed temperature, heat flux and convection and
radiation as well as their combinations have been implemented in our program. Only
the prescribed heat flux is presented here and the others can be found in Appendix.

The specified heat flux (qs) may be a spatial and/or time function:

2 kx
›T

›x
þ ky

›T

›y

� �
¼ qsðx; y; tÞ on S2 ð1aÞ

where qs is the specified heat flow per unit area in W/m2. Prescribed heat flux is an
example of Cauchy’s or Neumann’s BC. If qs is zero, it will represent a natural BC.

With the use of a weighted residual Galerkin procedure, the final finite element
equations may be written as:

C _TþKT ¼ Q ð2Þ

where C is the equivalent heat capacity matrix; K is the equivalent heat conduction
matrix; T and _T are vectors of the nodal temperature and its derivatives, respectively;
Q is the equivalent load vector. Detailed expressions of the matrices in equation (2) are
given in Appendix.

A general family of solution algorithms for equation (2) may be obtained by
introducing a parameter a where (0.0 # a # 1.0) such that:

tþaDt _T ¼
1

Dt
ðtþDtT2t TÞ ¼

1

aDt
ðtþaDtT2t TÞ ð3Þ

tþaDtT ¼ a tþDtTþ ð1 2 aÞtT ð4Þ

If a ¼ 0, an explicit Euler forward method is obtained; if a ¼ 1/2, an implicit
trapezoidal rule is obtained; and if a ¼ 1, an implicit Euler backward method is
obtained.

Substituting equation (3) into equation (2) and applying Newton-Raphson iterations
yields:

tþaDt Kþ
1

aDt

� �
C

� �ði21Þ

DTði Þ

¼tþaDt ðQb þQsÞ þtþaDt ðQ̂h þ Q̂rÞði21Þ 2tþaDt ðQ̂c þ q̂cÞði21Þ

ð5Þ

where a – 0. The definitions of all terms are given in Appendix and all quantities at
time (t þ aDt) are calculated from a relation similar to equation (4).

Depending on the value of a, the procedure may be either conditionally stable
(a , 0.5) or unconditionally stable a $ 0.5.

In the developed program, the geometry domain can be discretized into an
assembly of triangular and quadrilateral isoparametric finite elements. The triangular
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elements may have three or six nodes while the quadrilateral elements may have
four, eight, or nine nodes.

Nonlinearities may arise from the dependence of thermophysical properties on
temperature, as in the case of a radiation boundary condition. In the developed
program, nonlinearities are handled in a step-wise staggered approach; i.e. the values
of the parameters at the current step are calculated based on the temperature at the
previous step and are assumed to be constant during the current step. The heat
generation due to phase transformation is treated in a similar way.

Formulation for inverse analysis
The IHCP may be generally converted into an optimisation problem. The objective
function of the optimisation problem may be considered as the sum of the squares of
the differences between the calculated and measured temperatures. To reduce the
sensitivity of the IHCP solution to measurement errors and improve the simulation, the
data at a number of future time steps (nFTS) are employed in the analysis of the current
step. This means that in addition to the measured temperature at the current time step
T i, the measured temperatures at future time steps T iþ1;T iþ2; . . . ;T iþnFTS are also
used to estimate the heat flux q i.

A temporary assumption, normally called function specification, would normally be
considered for the values of qiþ1;q iþ2; . . . ;q iþnFTS : The function specification
technique works as a regularization procedure that stabilizes the solution process.

To damp the fluctuation of the solution due to measurement errors, the objective
function may be made more extensive by including more terms in the expression.
A commonly used variable in this regard is a scalar quantity based on the heat flux
vector q. This scalar term may be employed with a weighting factor a that is normally
called the regularization parameter. Higher order regularization terms involving
spatial derivates of q are not normally adopted.

Based on the above discussion, an objective function in the least-squares method,
with future time steps techniques and regularization, may be expressed as follows:

FðqÞ ¼
XN

i¼1

Ti
m 2 Ti

c

� �T

Ti
m 2 Ti

c

� �
þ a

XN

i¼1

q iTq i ð6Þ

where Ti
m;T

i
c are the experimentally measured and the theoretically calculated

temperature vectors at the ith time step in a computation window of size N,
respectively; q i is the heat flux vector at the ith time step, a is the regularization
parameter, and N is the number of total steps considered in the computation window.

The heat flux and temperature vectors are:

q ¼ ½q
1 q2 · · · qN

�T ð7aÞ

q i ¼ ½q
i
1 qi

2 · · · qi
J �T ð7bÞ

Ti
m ¼ ½T

i
1m Ti

2m · · · Ti
Lm �T ð8Þ

Ti
c ¼ ½T

i
1c Ti

2c · · · Ti
Lc �

T ð9Þ
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where L is the number of measurement points, and J is the number of heat flux
components that can be determined for the flux space distribution on the surface. It
should be noted that J must be less than or equal to L. It should also be noted that the
dimensions of the heat flux vector q i at each step is 1 £ J, while the total heat flux
vector q is J £ N as it includes the data in N steps; and the temperature vector T i at
each step is 1 £ L.

Equation (6) may be written as:

FðqÞ ¼
XN

i¼1

Ti
m 2 Ti

c

� �T

Ti
m 2 Ti

c

� �
þ aqTq ð10Þ

It should be noted that the temperature T k would be determined or affected only by the
heat fluxes qm where m # k. Mathematically, we may express T k as an implicit
function of the heat flux:

Tk
c ¼ f ðq1;q2; . . . ;qkÞ ð11aÞ

or in a successive form as:

Tk
c ¼ f Tk21

c ;qk
� �

Tk21
c ¼ f Tk22

c ;qk21
� �
..
.

T2
c ¼ f T1

c ;q
2

� �
T1

c ¼ f T0
c ;q

1
� �

ð11bÞ

As a result, the following equation can be obtained:

Tk
c ¼ Tk*

c þ
›T1

c

›q1
ðq1 2 q1* Þ þ

›T2
c

›q2
ðq2 2 q2* Þ þ · · · þ

›Tk
c

›qk
ðqk 2 qk* Þ ð12Þ

The values with an “*” superscript in equation (12) may be considered as initial
guess values that would ultimately lead the temperature Tk*

c :
Here we define the first derivative of temperature Ti

c with respect to heat flux q i as
the sensitivity matrix:

X i ¼
›Ti

c

›q i
¼

a11ði Þ a12ði Þ · · · a1J ði Þ

a21ði Þ a22ði Þ · · · a2J ði Þ

..

. ..
. . .

. ..
.

aL1ði Þ aL2ði Þ · · · aLJ ði Þ

2
6666664

3
7777775

ð13Þ
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arsði Þ ¼
›Ti

cr

›qi
s

where i ¼ 1; 2; . . . ;N ; r ¼ 1; 2; . . . ;L; and s ¼ 1; 2; . . . ; J : The sensitivity matrix X i

is an L £ J matrix.
The optimality of the objective function may be obtained by letting ›F=›q ¼ 0

(note that ›F=›q should be done with respect to each component q i, with
i ¼ 1; 2; . . . ;N ), and as a result we get the following set of equations:

XN

i¼1

›Ti
c

›qj

 !T

q j¼q j*

›Ti
c

›qj

 !
q j¼q j*

þaI

8<
:

9=
;ðqj 2 qj* Þ

¼
XN

i¼1

›Ti
c

›qj

 !T

q j¼q j*

Ti
m 2 Ti*

c

� �
2 aqj* j ¼ 1; 2; . . . ;N

ð14Þ

where qj* is the initial guess of heat fluxes, and Ti*

c is the calculated temperature
vector with the initial guess values.

Recalling equations (12)-(14) may be rearranged and rewritten in the following form:

XT
q¼q*Xq¼q* þ aI

� �
ðq2 q*Þ ¼ XTDT2 aq* ð15Þ

where X is labeled as the total sensitivity matrix for a multi-dimensional problem and
has the following form:

X ¼

X1 0 0 0

X2 X1 0 0

..

. ..
. . .

.
0

XN · · · X2 X1

2
666664

3
777775 ð16aÞ

and:

DT ¼ T1
m 2 T1*

c T2
m 2 T2*

c · · · TN
m 2TN *

c

� �T

ð17Þ

It should be noted that the dimension of matrix X is (L £ N) £ (J £ N) and DT has
dimensions of (L £ N). Also, it is worth noting that performing the calculation in
equation (15) may be easily done in the time domain, and no function specification for
q i is needed. If the total sensitivity is known, no iteration is required to get a final
solution.

Iterative and sequential algorithms
The form of the governing differential equation for both the temperature T(x, t) and
the sensitivity coefficient X (x, t) is same (Beck et al., 1985) and, therefore, the same
finite element program may be used to calculate them. While this is efficient from the
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programming point of view, it may not be practical, especially when the temperature
time history is somewhat long, the density of mesh is high, and the coefficients at all
points are not all needed to get the heat flux q.

An alternative way is to calculate the sensitivity matrices at each time step for the
target points. Such a procedure would still require an extensive calculation time and a
higher cost when the number of time steps considered and/or the number of heat flux
components are reasonably large.

A perturbation algorithm (Liu et al., 2002) was used to obtain the sensitivity matrices
X1 (only the information at the current step was included in the work presented in Liu
et al. (2002)). First, a given value q1*

is assumed for all components of the heat flux
vector q 1; the direct heat transfer calculation is conducted to get the temperature
distribution, say T1

0; for the given future steps at each thermocouple location. Then, one
component of heat flux q1, say the Jth component, is increased a reasonable amount,
such as 10 per cent, to obtain new temperatures, T1

J : The ratios of temperature
difference at each thermocouple location to the difference of Jth heat flux component are
the sensitivity coefficients. Such a perturbation is repeated for each component of the
heat flux q1*

until all sensitivity matrix components of X1 are obtained.
The above method would be adopted in this study. By applying this approach,

several issues should be resolved. First, the heat fluxes q i *

for i ¼ 2, . . . ,N in the
consecutive steps should be assigned. As mentioned, the function specification would
stabilize the solution process. Moreover, it would simplify the calculation of the total
sensitivity matrix X. We hereby use a constant assumption, i.e. q1þk* ¼ q1* ¼ q* for
1 # k # nFTS. Therefore, all sensitivity matrices X i for i ¼ 1; 2; . . . ;N may be
obtained from the above method by one assignment when the direct calculation is
performed for N steps.

The second issue is nonlinearity. The whole sensitivity matrix X is independent
of the heat flux q only if the conductivity k and specific heat cp are not functions of
the temperature or if the average values for these quantities are used when the
dependencies on temperature exist. The thermophysical properties of most steels are
temperature dependent. If this kind of dependency is considered, all properties should
be updated at the beginning of each time step, which is time-consuming, especially for
large size models. Moreover, such changes in properties would not be very large and
would not significantly change the magnitude of X. Also, updating the material
properties at the beginning of each time step would be based on the temperatures Tk *

obtained from the initially given values of heat flux q *, which is essentially an
approximation. The assumption of a constant value is, therefore, justified. As a slight
modification to the above assumption, we may choose to update the sensitivity matrix
X every M steps (in our numerical experiments, M ¼ 10). Both methods led to similar
results of inverse calculation, so the use of constant sensitivity matrix is justified.

Other factors affecting the accuracy of the calculated heat fluxes are the future
information and the addition of regularization parameters. To improve the accuracy due
to these factors, the iterative technique with convergence limits is adopted in this study.

Now we consider some modifications to equation (15). The term aq * (eventually
aqn in the iterative process) would lead to an increment Dq1 and a better estimation
for the first value of the first heat flux q1. This term makes the calculation more
cumbersome with very little benefit in convergence and, therefore, will be neglected,
and the equations may be written as:
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ðXTXþ aIÞDq1 ¼ XTDT* ð18aÞ

q1 ¼ q* þ Dq1 ð18bÞ

ðXTXþ aIÞDqn ¼ XTDTn21 ð18cÞ

qnþ1 ¼ qn þ Dqn ð18dÞ

where n is the number of iterations.
Starting with either equation (15) or equation (18a)-(18d), a number of N flux vectors

q i for i ¼ 1; . . .N ; corresponding to each time step, can be estimated simultaneously.
When N is equal to the whole time step in the measurement, the method may
theoretically be used to obtain the whole time history of heat fluxes.

The focus of this study is, however, more on the application of the method than on
the method itself. During the water jet cooling process, the temperature at each
measurement point will drop sharply within only a few limited time steps. Such a
sharp drop means that a large load or heat flux vector would occur during such a small
fraction of the time domain. Other measuring points will have the same phenomena but
at a different time window. This means that if the whole domain approach is used there
will be a large fluctuation in the load vector, and as a result the convergence of the
solution may be significantly affected.

Thus, the number of time steps N is normally less than 10. A “computation window”
of size N may be used sequentially to determinate the heat fluxes in the span of time
considered. To clarify this procedure, an example is illustrated in the following where
we use N ¼ 3 at the beginning of the analysis (the same if assuming at any time step).
In the first sequence, the heat fluxes at the first three steps may be obtained by
iteration as:

q1

q2

q3

0
BB@

1
CCA

nþ1

¼

q1

q2

q3

0
BB@

1
CCA
n

þ

Dq1

Dq2

Dq3

0
BB@

1
CCA
n

ð19Þ

The subsequent three heat flux vectors q 4 to q6 may be estimated if the temperatures
T3 are considered as the initial temperature for the next sequence, and the computation
window moves three steps; and so on for each subsequent sequence.

The above procedure presents a hybrid approach between a whole domain one and
a true sequential one that will be addressed in the following paragraphs. This hybrid
method implies that the heat fluxes at the previous iteration at each time step will be
used in the next iteration for the corresponding time step; i.e. at the (n þ 1)th iteration
q1 will be used for the first time step, q2 for the second one, and q3 for the third one.
There will be no need for function specification.

In this paper, a completely sequential approach with function specification is used.
First, the newly calculated q1 is used for all time steps within the computation window
after the first iteration; i.e. a constant function specification is used for this computation
window. Second, the computation window moves one time step at the next sequence
after obtaining a convergent solution in the current sequence. Once again, using the
previous example, the first computation window consists of time step 1 to time step 3;
and the second one includes time step 2 to time step 4.
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In each time step, the iterative procedure is used until the inversely predicted
temperature Tc converges to the measured temperature Tm. The convergence criteria
used to define the acceptance of the predicted temperature are based on an error norm
defined by:

Error–normn ¼ kDTnk ð20Þ

Two convergence criteria for ending the iteration process at each time step are used:

Error–normn # dT ð21aÞ

or

Error –normnþ1 2 Error–normn
�� ��

Error–normn
# 1 ð21bÞ

The values of dT and 1 depend on the measurement error level. The rationale behind
using absolute criteria is that while the norm at a given previous iteration is already
very small, the relative norm criterion is still not satisfied at the last iteration. For
example, if we set dT ¼ 0.5, 1 ¼ 0.05, and assume Error-normn ¼ 0.49 and
Error-normnþ1 ¼ 0.46 (here n þ 1 is the last iteration), then we have:

0:46 2 0:49j j

0:49
¼ 0:06 . 0:05

Flowchart
Figure 2 shows a simplified flowchart for the IHCP solution procedure. In the
procedure, the initial guess q* of heat flux q may be taken as zero or any other value.
However, the heat flux q2 obtained at the previous sequence may be used as the initial

Figure 2.
Flowchart for IHCP
solution procedure
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guess of heat flux at the current step to accelerate and enhance convergence.
The numerical results show that such a setup of the initial guess of the heat flux is
better than a random guess.

Parametric studies
Various verification cases have been performed to assess the accuracy, reliability, and
stability of the above procedures for both direct and inverse heat transfer calculations.
Verification cases for the direct heat transfer analysis were carried out by using both
3- and 6-node triangular elements and 4- and 8-node quadrilateral elements. The
results were compatible with the commercial program ANSYS (2002) within less than
0.5 per cent difference in all cases. In the following section, we provide only highlights
of the test cases performed for inverse analysis and the results obtained.

The inverse analysis procedures are tested with verification cases that are designed
to simulate the cooling of steel strips on run-out tables. Typical values of heat fluxes in
these applications are provided as an input for a direct analysis, and the direct results
are used to verify the inverse analysis. Two cases (triangular and impulse heat flux
inputs) are tested to investigate the effects of number of total (future) time steps on the
elimination of damping and lagging behaviour, and to identify the appropriate value of
the regularization parameters.

The general 2D FE model used for the inverse analysis is shown in Figure 3. The
model is 7 mm high and 20 mm wide. In this parametric study, the same discretization
is used in both the direct and inverse analyses. In the formulation of inverse analysis,
each component of the heat flux vector q i is coupled with one of the measurement
points. Normally, the target surface would be discretized with much more elements
(nodes) than the number of specified heat flux components, and there will be many
elements (nodes) between the target locations. In this study, the top surface is cooled
and evenly divided into two subregions, and two components of heat fluxes are applied
accordingly. Other surfaces are prescribed as thermally insulated. Four points, two on
the surface and two 1 mm beneath the surface points, are selected.The temperatures at
the two internal points are used in the inverse analysis to estimate both the heat fluxes
and the temperatures of the points on the top surface.

The first stage of the verification involves specifying input heat fluxes and solving a
direct heat transfer analysis problem to obtain the corresponding temperature field.
The second stage involves an inverse analysis whereas the internal temperatures at the
target points (here, two locations) calculated from the first stage are used as
virtually-measured ones, called as virtual internal temperature later on. From the
virtual internal temperatures, the heat fluxes and surface temperatures are inversly

Figure 3.
FE Model for inverse

calculation
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calculated. A comparison of the inversely calculated surface temperatures to the
directly calculated ones is performed to further verify the accuracy and stability of the
inverse analysis algorithm.

To study the effects of measurement errors in internal temperatures on inversely
calculated heat fluxes, random errors are imposed onto the calculated exact internal
temperatures with the following equation:

Tm ¼ Texact þ sr ð22Þ

where Tm is the virtual internal temperature, 8C; Texact is obtained from the direct heat
transfer analysis, 8C; r is a normally distributed random variable with zero mean and
unit standard deviation; and s is the standard deviation, 8C. In this work, the
maximum additive random error s is ^38C, making a total difference of up to 68C. In
the water jet cooling experiment, the plate temperature ranges from about 900 to 1008C.
This means that the relative error has a range of about ^0.33 per cent (at higher plate
temperatures) to ^3 per cent (at lower temperatures). In the following discussion, we
address the error in its absolute value.

The material is assumed to be carbon steel DQSK with a density of 7,800 kg/m3, a
conductivity of 35 W/m8C, and a specific heat of 470 J/kg8Cfor the whole calculation
time period. The thermal diffusivity for this steel is about 9.55 £ 1025 m2/s.

The time step used for both the direct and inverse analyses is the same and is equal
to 0.01 s. From the above values, the dimensionless time step is 0.955. This number
implies that the inverse calculation may not meet a difficult problem.

The norms for convergence are assigned to be of the order of magnitude of the
imbedded measurement error level. The number of future time steps is determined by
successive trials and is kept constant throughout the analysis. More discussions about
the choice of the regularization parameter will be given in following sections.

Triangular heat flux inputs
Figure 4 shows the two triangular heat flux inputs. They have the same profile and
peak value but with a time shift of 0.5 s to produce a spatial temperature gradient in the
longitudinal direction.

Inverse analysis is first performed with the assumption that there is no
measurement error in the internal temperatures. For this case, the calculated heat

Figure 4.
Triangular heat flux
inputs
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fluxes match exactly with the input values. The regularization parameter has no effect
on the results and may be assumed to be zero, and the number of future time steps also
has little effect on the inversely calculated heat fluxes.

Figures 5-7 show the results of those cases studied with various levels of
measurement errors and different regularization parameters and future time steps.

Figure 5 shows the effect of the measurement error level on the inversely calculated
heat flux with a fixed regularization parameter and a fixed number of future steps. As
expected, the heat flux fluctuation increases with the increase of error in the measured
temperature. However, the profile of the calculated heat flux is still in good agreement
with that of the exact input, and the accuracy of the predicted peak flux value is good.

The effect of the number of future time steps is illustrated in Figure 6. In these cases,
the value of the regularization parameter is kept constant at 1.0 £ 10211, and the error
level is fixed at ^1.08C. Fewer fluctuations of the calculated heat flux are evident with
the increase of the number of future steps. An obvious improvement occurs when the
number of future steps increases from 3 to 5, whereas there is slightly less impact for
increasing the number of future steps to 5 or 7. It may be concluded that using 4-6
future steps is appropriate and reduces fluctuation levels.

Figure 5.
Effect of measurement

error level;
a ¼ 1.0 £ 10211; 3 future

steps; error level:
upper ¼ ^0.58C;

bottom ¼ ^1.08C

Sequential
inverse

algorithm

367



Figure 7 shows the effect of varying the regularization parameter value, a, on the
calculated heat flux. Numerical experiments showed that this is a much more delicate
parameter to control. Stable and accurate results are obtained for a range of values of
a ¼ 1.0 £ 10210 to 1.0 £ 10212, which is close to the diagonal value of the sensitivity
matrix of 1.0 £ 10210. That is quite an interesting discovery.

Figure 6.
Effect of number of future
steps; a ¼ 1.0 £ 10211;
error level ¼ ^1.08C
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Figure 7.
Effect of regularization

parameter; 3 future steps;
error level ¼ ^1.08C

Sequential
inverse

algorithm

369



Lowering the value of a to less than 1.0 £ 10214 will increase fluctuations of the
inversely calculated heat fluxes, while increasing the value of a to greater than
1.0 £ 1029 greatly increases the required number of iterations and in many cases
causes divergence. It should be noted that for all the cases considered above, the
maximum difference between the exact value of the surface temperature and the
inversely calculated one is only 58C. This implies that the proposed algorithm might
successfully recover both the heat flux and surface temperature.

Impulse-like heat flux inputs
To further examine the capacity of the proposed IHCP scheme and its appropriateness
to the simulation of cooling on run-out tables, a second test with impulse-like heat
fluxes is performed. The impulse test is known to be the most stringent one for the
IHCP algorithms. To simulate the real conditions of a run-out table, a vary high value
of heat flux in the order of those experienced practically is applied in a very small
time period, equivalent to only five time steps in the solution scheme. The two
impulse-like heat flux inputs are shown in Figure 8. The same FE model and
procedures discussed in the previous sections are used here.

The inversely calculated heat fluxes under different conditions are shown in
Figures 9-11. As in the previous example, the inversely calculated heat fluxes are
almost identical to the input ones when no measurement errors are imposed onto the
internal temperatures. Also in this case, the regularization parameter has no effect on
the inverse results and may be assumed to be zero, and the number of future steps has
little effect on the inversely calculated heat fluxes.

Similar to the outcome of the previous example, it is found that with the increase of
the measurement errors in the input temperature, the value of both the regularization
parameter and the number of future time steps should be increased to obtain
acceptable levels of accuracy.

Figure 9 shows a comparison between the calculated heat fluxes using different
values of the regularization parameter and a level of ^18C error in the measured
temperature. Also, the inverse results show that the peak values of heat fluxes are quite

Figure 8.
Impulse-like heat flux
inputs
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accurate. Even when fluctuations of the calculated values are evident, the average value
of the fluctuation represents a good approximation of the exact input. It is also apparent
that the regularization parameter has less impact on the fluctuation of the results.

The effect of the number of future steps on the calculated heat flux for the
impulse-like heat flux case is shown in Figure 10. It may be seen that there is a
somewhat large fluctuation when four future steps are used, and that the fluctuation
from the measurement errors is damped gradually with the increase of the number of
future steps. When seven future steps are used, the calculated heat flux value is quite
close to the input for the period during which the input heat flux is constant.

Figure 9.
Effect of regularization

parameter; 3 future steps;
error level ¼ ^1.08C
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Figure 10.
Effect of future step
number; a ¼ 1.0 £ 10211;
error level ¼ ^1.08C
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However, the peak value is also smeared when the number of future steps increases,
although it may still be captured accurately. The damping effect of the future time
steps increases significantly when the number of future steps is larger than the number
of time steps of the input impulse. This is logical since more weight for the steps with a
lower heat flux input is assumed.

With the increase of the measurement error level, both the number of future steps
and the value of the regularization parameter should be increased to get reasonable
results. Figure 11 shows the calculated heat flux for error level ^3.08C. The result is
obtained by using five future steps and setting a ¼ 1.0 £ 10210

It is obvious that the fluctuation of the estimated heat flux is quite large. Although
the peak value seems to be adequately captured, it is difficult to say that this is a real
peak because such a peak may come from a larger measurement error. It should be
noted that other choices of future time step numbers and regularization parameter do
not produce better results. This indicates that the calculated heat fluxes (if a
convergence is achieved) would be quite inaccurate if the random error in the actual
measured temperature is larger than ^3.08C.

From the several examples discussed above, we may conclude that the proposed
inverse calculation is generally stable and accurate but very sensitive to the
measurement error. The calculated peak heat fluxes are in reasonable agreements with
the inputs only when the error is not larger than ^3.08C. It is also apparent that the
number of future time steps should be around 3, while the regularization parameter
value should be equivalent to the diagonal value of the sensitivity matrix.

Applications
The above procedure is used to investigate heat transfer during the impinging water
cooling of steel plates. The intention here is to check the appropriateness of the
proposed method for simulating such a complex heat transfer applications.

Figure 11.
Calculated heat flux; error

level ¼ ^3.08C; 5 future
steps; a ¼ 1.0 £ 10210
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The experimental setup and procedure are briefly described in this section, and the
details can be found in Meng (2002). The test plate dimensions are 280 £ 280 £ 7 mm.

As shown in Figure 12, thermocouples are installed at eight locations in the
circumferential direction on each test plate, starting in the centre of the plate with an
increment of 15.9 mm in the radial direction, and they are numbered from 1 in the centre to
8 at the farthest. At each location, an internal thermocouple is installed in a hole with a
diameter of 1.6 mm that is drilled from the plate’s bottom surface. The measuring junction
is fixed onto the end surface of the hole, which is 1 mm below the plate’s top surface.

The cooling water impinges from a 19 mm nozzle vertically onto the plate’s top
surface at the stagnation point where thermocouple T1 is assumed to be located. Upon
reaching the plate surface, water spreads radically outwards.

With the above setup, the problem is assumed to be a 2D axisymmetric one, without
considering the effect of the hole used for installing the internal thermocouples.

The material of plate is carbon steel DQSK. Its density and specific heat are
assumed to be constant throughout the analysis, with values of 7,800 kg/m3 and
470 J/kg8C, respectively. The thermal conductivity can be calculated by the following
equation with a correlation coefficient of 0.977 and a standard error of 1.0:

k ¼ 60:571 2 0:03849 £ Tð8CÞ in W=m8C ð23Þ

The above equation is generally valid for a temperature ranging from 0 to 1,0008C.

Figure 12.
Schematic arrangements
of thermocouples
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“Raw” temperatures are recorded at a frequency of 100 Hz. The total recording time of
a typical test is about 100 s. The raw data may be directly used in the inverse heat
calculation analysis. However, a simple but effective 11-point average smoothing
technique is used to filter noise in the internal temperatures. A careful comparison
revealed that all the features of the actual cooling curves are retained in the smoothed
profiles. In particular, this filtration does not affect the maximum peak of the
temperature gradient. It is, therefore, reasonable to expect that the inverse procedure
based on the smoothed temperature profile would capture the original characteristic of
the heat flux history on the surface. Moreover, the noise in raw temperatures is damped
out (the random error is less than ^3.08C) and the inverse calculation would probably
be more efficient.

Typical cooling curves are shown in Figures 13 and 14. It may be seen that in the air
cooling stage the plate temperature is fairly uniform, and it decreases gradually and
almost linearly due to radiation and air convection heat transfer. As soon as the water
impinges onto the plate the internal temperatures at locations 1 and 2 have an
immediate and remarkable drop, and then the gradient decreases slightly, followed by
a second sharp drop in temperature. Note that the cooling curves of the temperatures at
the first two locations are almost identical for the whole cooling time. From a
thermodynamical viewpoint, locations 1 and 2 are within the boundaries of the
impingement zone.

With the impingement of cooling water on the plate surface, the temperatures at
locations 3-8 begin to decrease. However, the magnitude of the initial drop decreases as
the distance from stagnation increases. An important point to note, however, is that

Figure 13.
Example of smoothed

measured temperatures;
from left to right: T1 to T8

(T1 and T2 overlapped);
DQSK; Qw ¼ 30 l/min;

Tw ¼ 708C; Dn ¼ 19 mm
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after the initial drop, the temperatures have either a stable and almost flat period or a
slight recovery. Following this period, a second significant drop occurs at these
locations, and the closer the location from the stagnation point, the earlier the second
drop occurs, indicating the arrival of the rewetting front from a thermodynamical point
of view. It is worthy to point out that the temperature curves at all locations change
their slopes to much smaller values when the temperature reaches about 2008C,
suggesting a change of the heat transfer mode.

A full 2D axisymmetric FE model is created for the cooling plate of 115 mm in radius
and 7 mm in thickness. There are 2,430 4-node quadrilateral elements and 2,542-nodes in
the model. The elements are uniform in the radial direction and vary from fine (on the top
surface) to coarse (on the bottom surface) in the thickness direction.

In the inverse calculations, a constant weighted averaged conductivity value of
35 W/m8C (considering that the critical heat transfer happens above 4008C) is used for
the whole time span and phase transformation heat is not considered.

The right-hand surface, i.e. the outside of the cylindrical disc, is assumed to be
thermally insulated, and a constant heat flux equivalent to air cooling is applied to the
bottom surface.

The top surface is divided into eight zones. The first and second zones are
equivalent to the impingement zone. The remaining part of the plate is evenly
divided into six zones. Each of the eight zones corresponds to one thermocouple.
The actual values of heat fluxes at the eight measurement points of temperatures
are determined using inverse analysis, and correspondingly applied to the
corresponding zone.

In this investigation, the relative norm is fixed at 5 per cent, the absolute norm is
28C, and the regularization parameter is fixed at 1 £ 10210 (equivalent to the diagonal
value of the sensitivity matrix). The number of future time steps changes for different
cases.

Figure 14.
Part of detailed profile of
smoothed temperature

HFF
16,3

376



The full view of heat flux histories, based on the smoothed temperatures
corresponding to Figure 13, is shown in Figure 15. In the calculation, only the data at
the current time step is used, i.e. no future step is used. Only a few iterations are needed
to get a convergent result for each step.

The results in Figure 15 reveal all features of its corresponding temperature curves.
For the air cooling stage, the heat fluxes at all locations have relatively close values of
about 14 KW/m2, which is typical due to the combination of radiation and air
convection cooling.

As the water hits the plate, the heat fluxes at locations 1 and 2 instantaneously
jump to a very high value. After the initial jump corresponding to the initial drop
of temperature, there is another drop of heat flux, and then a second extensive
jump occurs. The profile of these two curves is repeated for most of the cooling
time. The differences in heat fluxes come from the slight difference in temperatures.
The highest value of heat flux is 6.0 and 5.5 MW/m2 at locations 1 and 2,
respectively. These values are in good agreement with the findings in the literature
Liu et al. (2002).

The heat fluxes at locations 3-8 jump at different instants, inversely proportional to
the distance from the stagnation point. The magnitudes of the highest heat fluxes of
0.4-1.0 MW/m2 are much lower than those at locations 1 and 2. The slight recovery of
temperatures in Figure 13 leads to a positive heat flux (negative value in the figure),
which in practice may result from the phase transformation heat. When the
cooling water gradually rewets the top surface, the heat fluxes at these locations
rapidly increase, and then decrease at nearly the same speed. The shapes of heat flux
profiles are almost identical. The highest values at those locations are about
3.5-4.3 MW/m2.

Figure 15.
Full views of heat flux

histories on the top
surface; from left to right:

q1 to q8; DQSK;
Qw ¼ 30 l/min;

Tw ¼ 708C; Dn ¼ 19 mm
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The boiling curve is the presentation of heat flux as a function of the wall superheat
DTsat (the difference between the surface and the saturation temperatures). When
the saturation temperature is constant, the relationship between the heat flux and
surface temperature may display the characteristic of a boiling curve. Figure 16 shows
the boiling curves for the three locations 2, 4, and 6. It is clear from the P2 curve for the
impingement zone that the transition and nucleate boiling temperature is about 7408C,
and that the maximum heat transfer occurs at about 2108C, which is generally in very
good agreement with the experimental results (Ishigai et al., 1978). These results are
also reasonable from a thermodynamics point of view.

To investigate the detailed heat transfer in the impingement zone, a small model for
the impingement area of 21 mm in radius and 7 mm in thickness, which is slightly
bigger than the plate portion inscribed by location 2, is considered. 2D axisymmetrical
conditions are assumed, and the measured temperatures at locations 1 and 2 are used
in this model. Like the full model, the right-hand surface, i.e. the outside of the
cylindrical disc, is assumed to be thermally insulated, and a constant heat flux
equivalent to air cooling is applied to the bottom surface.

Two cases are studied. In the first case, two different heat flux components are
assumed on the plate’s top surface (Figure 3) and correspond to the two measured
temperature histories. In the second case, only one heat flux component is prescribed
on the plate’s top surface. The second situation means that the unknowns are less than
the temperature measurements, and so we have an overdetermined inverse problem,
which would be, generally, more stable. In these two cases, different numbers of future
time steps are adopted to investigate the improvement in stability. The results
obtained from this model are shown in Figures 17 and 18 where 0F and 3F indicate the
heat flux with 0 and 3 future steps.

Figure 16.
Boiling curves; DQSK;
Qw ¼ 30 l/min;
Tw ¼ 708C; Dn ¼ 19 mm
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Figure 17.
Heat flux in water

impingement zone; two
components of heat flux

assumed; DQSK;
Qw ¼ 30 l/min;

Tw ¼ 708C; Dn ¼ 19 mm

Figure 18.
Heat flux in water

impingement zone; one
component of heat flux

assumed; DQSK;
Qw ¼ 30 l/min;

Tw ¼ 708C; Dn ¼ 19 mm
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Figure 17 is for the case whereas assumption of two heat fluxes is used, and shows the
effects of the number of future steps on the inversely calculated heat fluxes in the
impingement zone for the instant of impingement and shortly thereafter. There is a
sharp jump in the heat flux values at the instant of impingement, followed by a much
smaller but sharp decrease to a value that steadily decreases at a slow rate.
Calculations verified that there is little difference between the results for the numbers
of future steps larger than 3. This indicates that similar cooling conditions exist for a
smaller area in the centre of the jet that may be considered as a single cooling zone, the
impingement zone.

This conclusion may be confirmed by comparing the results in Figure 18, using the
assumption of one component of heat flux on the top surface, to those in Figure 17.
The insensitivity of these results to the number of future steps may indicate that the
random error in internal temperature measurement is filtered out due to the average
smoothing technique discussed above.

Comparison of Figure 15 with Figures 17 and 18 leads to the conclusion that the
simplified model may be efficiently used to study the heat transfer behaviour in the
impingement zone, which has a diameter approximately equal to twice the diameter of
the nozzle for this test condition.

Figure 19 shows the heat flux history at the second thermocouple location for a
longer cooling time. The figure shows an initial sharp increase in heat flux value to
about 3.7 MW/m2 as soon as water impinges onto the plate’s surface, and then a
decrease to a value of 2.1 MW/m2, which remains as an average value during this
period of water cooling. The heat flux value of 2.1 MW/m2 is consistent with those
reported in Colas (1994) and Osman (1990). The second sharp increase to about
4.7 MW/m2 takes place at a temperature of around 4008C, which indicates the
Leidenfrost point.

The HTC at the stagnation point is shown in Figure 20. It may be seen that the HTC
holds constant regardless of the calculated surface temperature if the surface
temperature exceeds 4008C. This trend coincides with the experimental findings
reported in Otomo et al. (1987).

Figure 19.
Heat flux at the second
location; DQSK;
Qw ¼ 30 l/min;
Tw ¼ 708C; Dn ¼ 19 mm

HFF
16,3

380



Summaries
A general 2D FEA program for direct and inverse heat transfer analyses is developed.
In the proposed inverse method, the least-squares method, sequential function
specification, and regularization are used. And the sensitivity matrix is calculated only
once at the beginning of the calculation span, and used for all steps. The iterative
technique is adopted to compensate the use of the regularization parameter and the
simplification in sensitivity matrix calculation. Two criteria are used for convergence.
A parametric study indicates that in inverse calculation the fluctuation of
inversely calculated heat flux due to random errors in the measurement data may
be damped by increasing the number of future steps and the value of regularization
parameter.

Experimental results for the cooling of a stationery hot plate are analysed and
assessed using the proposed procedures. The heat flux values and profiles are
consistent with those in the literatures. It is also verified that the impingement zone is
about two times the diameter of the nozzle for the test conditions presented, and that
the simplified model is capable of determining the heat transfer behaviour in the
impingement zone.

All calculations show that the presented algorithm and procedures are very simple,
useful, and effective in recovering the heat flux history on the cooling surface, and are
appropriate for the IHCP in run-out table cooling applications. The proposed procedure
is currently being used to study the thermodynamics during the circular jet
impingement cooling process of both stationary and moving plates.
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Appendix. Finite element matrix equations
The governing equation for conduction heat transfer in a 3D solid is given by:

rcp
›T

›t
¼

›

›x
kx
›T

›x

� �
þ

›

›y
ky
›T

›y

� �
þ

›

›z
kz
›T

›z

� �� �
þ qb ðA1Þ

where kx; ky; kz are the thermal conductivities in x, y and z directions, respectively, T is the
temperature, q b is the internal rate of heat generated per unit volume, t is time, r is the density
and cp is the specific heat.
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The sources of nonlinearity in equation (A1) may be due to temperature dependent material
properties or dependency of the BC on temperature. The above equation may be subject to one or
a combination of the following BC:

Prescribed temperature. This is an example of the Dirichlet BC. The prescribed temperature
Ts may be a function of time and boundary coordinate (spatial function):

T ¼ Tsðx; y; tÞ on S1 ðA2Þ

Prescribed heat flux. The specified heat flux (qs) may be a spatial function or/and a function of
time:

2 kx
›T

›x
þ ky

›T

›y

� �
¼ qsðx; y; tÞ on S2 ðA3Þ

where qs is the specified heat flow per unit area (W/m2). The prescribed heat flux is an example of
the Cauchy’s or Neumann BC. If qs is zero, it will represent a natural BC.

Convection heat exchange. When due to contact with a fluid medium, there is a convective
heat transfer on part of the body surface, S4, we have:

2 kx
›T

›x
þ ky

›T

›y

� �
¼ hðTs 2 T fÞ on S4 ðA4Þ

where h is the convection heat transfer or film coefficient (W/m28C), which may be temperature
dependent (nonlinear), Ts is the surface temperature (8C) on S4, and Tf is the fluid temperature
(8C), which may be a spatial or/and time function.

Radiation. Assuming a grey body, the BC is given by:

2 kx
›T

›x
þ ky

›T

›y

� �
¼ 1s T4

sr 2 T4
r

h i
on S5 ðA5Þ

where 1 is the emissivity of the body’s surface, s is the Stefan-Boltzmann constant (W/m28K4),
Tsr is the absolute temperature of surface S5 (8K), and Tr is the known absolute temperature of
the external radiative source (8K). The radiation boundary condition may be dealt with as a
nonlinear convective boundary condition with an equivalent temperature dependent film
coefficient, k; where:

k ¼ 1s T2
sr þ T2

r

� �
Tsr þ Trð Þ ðA6Þ

The above boundary condition equations may be rewritten to the general form of the BCs:

kn
›T

›n
¼ qs þ hðT f 2 TsÞ þ 1s T4

sr 2 T4
r

� �
ðA7Þ

where n is the normal to the boundary and the input heat flux is considered only on pertinent
surfaces, i.e. surfaces that have specified BC.

Now, we assume an approximation function for the temperature given by:

TðxÞ ¼ NiðxÞTi ðA8Þ

where Ni(x) is the approximation function with i varying from one to the number of nodes per
element, the vector x has the components x, y and z, and Ti are the nodal temperatures. Note that
we consider only a typical element and assume that the normal finite element assembly
procedures apply.

Applying the Galerkin approach and using the Gauss theorem, the equivalent finite
element equations representing equations (A1) and (A7) may be written in the following final
form:
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½C� · { _T e} þ ½Kc� þ ½Kh� þ ½Kr�
� 	

· {T e} ¼ {Q b} þ {Q s} þ {Qh} þ {Q r} ðA9Þ

where the definitions of terms in equation (A9) are summarized in Table AI.
Considering the general nonlinear and transient case of equation (A9), the solution may

be realized by re-writing the equation at time (t þ Dt) and ith iteration in the following
form:

tþDtCði Þt þ Dt _Tði Þ þtþDt ðKc þKh þKrÞði Þt þ DtTði Þ

¼ ðtþDtQb þtþDt Qs þtþDt Qh þtþDt QrÞði Þ
ðA10Þ

It may be shown that using the Newton-Raphson approximation and the a-method, the
solution to the above equation yields:

tþaDt ðKc þKh þKrÞ þ
1

aDt

� �
·C

� �ði21Þ

DTði Þ

¼tþaDt ðQb þQsÞ þtþaDt ðQ̂h þ Q̂rÞði21Þ 2tþaDt ðQ̂c þ q̂cÞði21Þ

ðA11Þ

where the definition of the new terms introduced here are given in Table AII.

½C� ¼
R

V
rc½N �T½N �dV Thermal capacity matrix

Kc ¼
R

V ½B�
T½K�½B�dV Thermal conductivity matrix

½Kh� ¼
R

S h½N s�T½N s�dS Thermal conductivity matrix due to convection BC

½Kr� ¼
R

S k½N
s�T½N s�dS Thermal conductivity matrix due to radiation BC

{Q}b
¼
R

V q b½N�TdV Heat flux vector due to internal heat generation

{Q}s ¼
R

S q s½N s�TdS Heat flux vector due to input surface flux

{Q}h
¼
R

S hT f½N
s�TdS Heat flux vector due to convection BC

{Q}r ¼
R

S kTr½N
s�TdS Heat flux vector due to radiation BC

{T}; { _T} Vector of global nodal temperatures and temperature gradients,
respectively

k ¼ 1s T2
r þ T2

sr

� �
ðTr þ TsrÞ Equivalent heat transfer coefficient due to radiation

›T

›x


 �
¼

›

›x
ðNi

�TiÞ ¼ ½B�{ �T}e Partial derivative of temperature

½K� ¼

kx 0 0

ky 0

sym kz

2
664

3
775 Element conductivity matrix

½N � ¼ N 1 N 2 · · · Nn

h i
Approximation or shape function, n is the number of nodes
per element

Table AI.
Definition of the terms in
the FE general heat
conduction equation
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Term Name Expression

tþDtQ̂h ði21Þ
Nodal heat flux
contribution due to
convection BC, nonlinear
and transient effects

tþDtQ̂h ði21Þ
¼
R tþDt

Sh
h ði21ÞNST

NS tþDtTf 2
tþDt Tði21Þ

� 

· dS

Note:
R tþDt

Sh
h ði21ÞNST

NS · dS ¼tþDt Kh ði21Þ

tþDtQ̂r ði21Þ
Nodal heat flux
contribution due to
radiation BC, nonlinear and
transient effects

tþDtQ̂rði21Þ
¼
R tþDt

Sh
k ði21ÞNST

NS tþDtTr 2
tþDt Tði21Þ

� 

· dS

Note:
R tþDt

Sh
k ði21ÞNST

NS · dS ¼tþDt Krði21Þ

tþDtQ̂cði21Þ

Nodal heat flux
contribution due to
conductivity, nonlinear
and transient effects

tþDtQ̂cði21Þ

¼
R

V BTt þ DtKði21ÞBtþDtTði21Þ · dV

Note:
R

V
BTt þ DtKði21ÞB dV ¼tþDt Kcði21Þ

tþDtq̂cði21Þ
Nodal heat flux
contribution due to thermal
capacity, nonlinear and
transient effects

tþDtq̂cði21Þ
¼
R tþDt

V
ðrcÞði21ÞNTN · tþDtTði21Þ 2t T

� 

=Dt

� 	
· dV

;tþDt Cði21Þ tþDtTði21Þ 2t T
� 	

=Dt
Table AII.

Definition of the terms in
heat transfer equation
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